首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

分析 >> 数学分析 >> 导数及微分 >> 高阶导数
Questions in category: 高阶导数 (High-order derivatives).

求 $y=\tan x$ 的高阶导数

Posted by haifeng on 2020-10-21 10:49:13 last update 2020-10-25 14:59:27 | Answers (1)


$y=\tan x$ 的高阶导数都可以表示为 $\tan x$ 的多项式.

 

证明: $(\tan x)^{(n)}$ 中最高次 $\tan^{n+1}x$ 前面得系数是 $n!$.

 

例如:

\[y'=(\tan x)'=\sec^2 x=1+\tan^2 x\]

\[
\begin{split}
y''=(\sec^2 x)'&=2\sec x\cdot(\sec x)'=2\sec x\cdot\sec x\tan x\\
&=2\sec^2 x\tan x=2(1+\tan^2 x)\tan x\\
&=2\tan^3 x+2\tan x=2\tan x\cdot(1+\tan^2 x)
\end{split}
\]

 

求 $y^{(n)}(0)$

 

[Hint] 利用 $y'=(\tan x)'=\sec^2 x=\frac{1}{\cos^2 x}$ 得 $y'\cdot\cos^2 x=1$. 然后两边再求 $n$ 阶导数, 利用 Leibniz 求导法则.